Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.535
Filtrar
1.
Radiat Res ; 201(4): 275-286, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453644

RESUMO

We present an extension of the Local Effect Model (LEM) to include time-dose relationships for predicting effects of protracted and split-dose ion irradiation at arbitrary LET. With this kinetic extension, the spatial and temporal induction and processing of DNA double strand breaks (DSB) in cellular nuclei can be simulated for a wide range of ion radiation qualities, doses and dose rates. The key concept of the extension is based on the joint spatial and temporal coexistence of initial DSB, leading to the formation of clustered DNA damage on the µm scale (as defined e.g., by the size scale of Mbp chromatin loops), which is considered to have an increased cellular lethality as compared to isolated, single DSB. By simulating the time dependent induction and repair of DSB and scoring of isolated and clustered DSB upon irradiation, the impact of dose rate and split dose on the cell survival probability can be computed. In a first part of this work, we systematically analyze the predicted impact of protraction in dependence of factors like dose, LET, ion species and radiosensitivity as characterized by the photon LQ-parameters. We establish links to common concepts that describe dose rate effects for low LET radiation. We also compare the model predictions to experimental data and find agreement with the general trends observed in the experiments. The relevant concepts of our approach are compared to other models suitable for predicting time effects. We investigate an apparent analogy between spatial and temporal concentration of radiation delivery, both leading to increased effectiveness, and discuss similarities and differences between the general dependencies of these clustering effects on their impacting factors. Finally, we conclude that the findings give additional support for the general concept of the LEM, i.e. the characterization of high LET radiation effects based on the distinction of just two classes of DSB (isolated DSB and clustered DSB).


Assuntos
Quebras de DNA de Cadeia Dupla , Radiação Ionizante , Dano ao DNA , Núcleo Celular , Sobrevivência Celular/efeitos da radiação , Reparo do DNA
2.
Phys Med Biol ; 69(4)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211313

RESUMO

Objective.In this paper, we present MONAS (MicrOdosimetry-based modelliNg for relative biological effectiveness (RBE) ASsessment) toolkit. MONAS is a TOPAS Monte Carlo extension, that combines simulations of microdosimetric distributions with radiobiological microdosimetry-based models for predicting cell survival curves and dose-dependent RBE.Approach.MONAS expands TOPAS microdosimetric extension, by including novel specific energy scorers to calculate the single- and multi-event specific energy microdosimetric distributions at different micrometer scales. These spectra are used as physical input to three different formulations of themicrodosimetric kinetic model, and to thegeneralized stochastic microdosimetric model(GSM2), to predict dose-dependent cell survival fraction and RBE. MONAS predictions are then validated against experimental microdosimetric spectra andin vitrosurvival fraction data. To show the MONAS features, we present two different applications of the code: (i) the depth-RBE curve calculation from a passively scattered proton SOBP and monoenergetic12C-ion beam by using experimentally validated spectra as physical input, and (ii) the calculation of the 3D RBE distribution on a real head and neck patient geometry treated with protons.Main results.MONAS can estimate dose-dependent RBE and cell survival curves from experimentally validated microdosimetric spectra with four clinically relevant radiobiological models. From the radiobiological characterization of a proton SOBP and12C fields, we observe the well-known trend of increasing RBE values at the distal edge of the radiation field. The 3D RBE map calculated confirmed the trend observed in the analysis of the SOBP, with the highest RBE values found in the distal edge of the target.Significance.MONAS extension offers a comprehensive microdosimetry-based framework for assessing the biological effects of particle radiation in both research and clinical environments, pushing closer the experimental physics-based description to the biological damage assessment, contributing to bridging the gap between a microdosimetric description of the radiation field and its application in proton therapy treatment with variable RBE.


Assuntos
Terapia com Prótons , Prótons , Humanos , Eficiência Biológica Relativa , Método de Monte Carlo , Sobrevivência Celular/efeitos da radiação
3.
Radiat Res ; 201(3): 261-266, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198248

RESUMO

To determine if the radiation sensitivity of cells that survive acute high-dose radiation exposure used in stereotactic body radiation therapy (SBRT), differs from the sensitivity of non-irradiated cells and cells that survive multiple 2 Gy doses of radiation. Isogenic rodent and two human tumor cell lines were exposed to 14 × 2 Gy of radiation, or a single acute dose of 12 Gy. The most resistant cell line was also exposed to an acute dose of 15 Gy. One week after 12 Gy, and 4 days after 14 × 2 Gy, surviving cells were exposed to 0-8 Gy in 2 Gy doses and cell survival was assessed by colony formation. In addition, the colony forming efficiency of 12 Gy survivors was evaluated for 1 month postirradiation. For cells exposed to 15 Gy, the response of surviving cells to 6 Gy was determined for up to 35 days postirradiation and compared to the 6 Gy surviving fraction of control cells. The radiation sensitivity of cells that survived 12 Gy exposure, and cells that survived 14 fractions of 2 Gy irradiation did not differ from the response of unirradiated control cells. However, the growth rate and colony forming efficiency of 12 Gy survivors was transiently reduced for greater than 2 weeks postirradiation. In contrast to the unchanged sensitivity of 12 Gy surviving cells at day 7 postirradiation, 15 Gy survivors exhibited enhanced sensitivity to radiation for up to 21 days postirradiation and suggests a biological basis for SBRT.


Assuntos
Radiocirurgia , Humanos , Radiocirurgia/efeitos adversos , Doses de Radiação , Tolerância a Radiação , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação
4.
Int J Radiat Biol ; 100(2): 220-235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37812149

RESUMO

PURPOSE: Due to the expanding repertoire of treatment devices that use radiation, the possibility of exposure to both low-dose and high-dose radiation continues to increase. Skin is the outermost part of the body and thus directly exposed to radiation-induced damage. In particular, the skin of diabetes patients is fragile and easily damaged by external stimuli, such as radiation. However, damage and cellular responses induced by ionizing irradiation in diabetic skin have not been explored in detail. In this study, we investigated the effects of several irradiation dose on normal keratinocytes and those from type II diabetes patients, with particular focus on DNA damage. MATERIALS AND METHODS: Cellular responses to low-dose radiation (0.1 Gy) and high-dose radiation (0.5 and 2 Gy) were evaluated. Cell cycle analysis was conducted via flow cytometry and cell viability analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Proteins related to the DNA damage response (DDR) and repair signaling pathways and apoptosis were detected via immunoblot analysis. Apoptosis and cell differentiation were additionally examined in 3D skin organoids using immunohistochemistry. RESULTS: Compared to respective control groups, no significant changes were observed in cell cycle, DDR and repair mechanisms, cell survival, and differentiation in response to 0.1 Gy irradiation in both normal and diabetes type II keratinocytes. On the other hand, the cell cycle showed an increase in the G2/M phase in both cell types following exposure to 2 Gy irradiation. At radiation doses 2 Gy, activation of the DDR and repair signaling pathways, apoptosis, and cell differentiation were increased and viability was decreased in both cell types. Notably, these differences were more pronounced in normal than diabetes type II keratinocytes. CONCLUSIONS: Normal keratinocytes respond more strongly to radiation-induced damage and recovery than diabetes type II keratinocytes.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/radioterapia , Queratinócitos/efeitos da radiação , Radiação Ionizante , Doses de Radiação , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Apoptose/efeitos da radiação , Relação Dose-Resposta à Radiação
5.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068965

RESUMO

A century of studies has demonstrated that the magnitude of a radiation dose determines the extent of its biological effect. However, different types of radiation show different levels of effectiveness. Although all types of X-rays are usually considered to be equivalent, several authors have demonstrated an inverse relationship between photon energy and the biological effectiveness of the X-ray. Nonetheless, the differences among 50-100 keV X-rays are usually considered absent. However, comparing different types of X-rays with different energies is not easy since they are often used with different dose rates, and the latter can be a confounding factor. We compared the biological effectiveness of X-rays with different photon energies but with the same dose rate. Moreover, we also studied X-ray with different dose rates but the same photon energy. Biological effectiveness was assessed measuring DNA damage and cell survival. We confirmed that both the dose rate and photon energy influence the effectiveness of an X-ray. Moreover, we observed that differences in the 50-100 keV range are detectable after controlling for dose-rate variations. Our results, confirming those of previous studies in a more consistent way (and accompanied by hypotheses on the importance of the number of incident photons), underline the limitations of using the dose as the sole parameter for in vitro studies.


Assuntos
Dano ao DNA , Fótons , Raios X , Radiografia , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação
6.
Radiat Res ; 200(2): 139-150, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37303133

RESUMO

This study aims to provide a model that compounds historically proposed ideas regarding cell survival irradiated with X rays or particles. The parameters used in this model have simple meanings and are closely related to cell death-related phenomena. The model is adaptable to a wide range of doses and dose rates and thus can consistently explain previously published cell survival data. The formulas of the model were derived by using five basic ideas: 1. "Poisson's law"; 2. "DNA affected damage"; 3. "repair"; 4. "clustered affected damage"; and 5. "saturation of reparability". The concept of affected damage is close to but not the same as the effect caused by the double-strand break (DSB). The parameters used in the formula are related to seven phenomena: 1. "linear coefficient of radiation dose"; 2. "probability of making affected damage"; 3. "cell-specific repairability", 4. "irreparable damage by adjacent affected damage"; 5. "recovery of temporally changed repairability"; 6. "recovery of simple damage which will make the affected damage"; 7. "cell division". By using the second parameter, this model includes cases where a single hit results in repairable-lethal and double-hit results in repairable-lethal. The fitting performance of the model for the experimental data was evaluated based on the Akaike information criterion, and practical results were obtained for the published experiments irradiated with a wide range of doses (up to several 10 Gy) and dose rates (0.17 Gy/h to 55.8 Gy/h). The direct association of parameters with cell death-related phenomena has made it possible to systematically fit survival data of different cell types and different radiation types by using crossover parameters.


Assuntos
Dano ao DNA , Reparo do DNA , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Quebras de DNA de Cadeia Dupla
7.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175568

RESUMO

Intrinsic radiosensitivity is a major determinant of radiation response. Despite the extensive amount of radiobiological data available, variability among different studies makes it very difficult to produce high-quality radiosensitivity biomarkers or predictive models. Here, we characterize a panel of 27 human cell lines, including those derived from lung cancer, prostate cancer, and normal tissues. In addition, we used CRISPR-Cas9 to generate a panel of lines with known DNA repair defects. These cells were characterised by measuring a range of biological features, including the induction and repair of DNA double-strand breaks (DSBs), cell cycle distribution, ploidy, and clonogenic survival following X-ray irradiation. These results offer a robust dataset without inter-experimental variabilities for model development. In addition, we used these results to explore correlations between potential determinants of radiosensitivity. There was a wide variation in the intrinsic radiosensitivity of cell lines, with cell line Mean Inactivation Doses (MID) ranging from 1.3 to 3.4 Gy for cell lines, and as low as 0.65 Gy in Lig4-/- cells. Similar substantial variability was seen in the other parameters, including baseline DNA damage, plating efficiency, and ploidy. In the CRISPR-modified cell lines, residual DSBs were good predictors of cell survival (R2 = 0.78, p = 0.009), as were induced levels of DSBs (R2 = 0.61, p = 0.01). However, amongst the normal and cancerous cells, none of the measured parameters correlated strongly with MID (R2 < 0.45), and the only metrics with statistically significant associations are plating efficiency (R2 = 0.31, p = 0.01) and percentage of cell in S phase (R2 = 0.37, p = 0.005). While these data provide a valuable dataset for the modelling of radiobiological responses, the differences in the predictive power of residual DSBs between CRISPR-modified and other subgroups suggest that genetic alterations in other pathways, such as proliferation and metabolism, may have a greater impact on cellular radiation response. These pathways are often neglected in response modelling and should be considered in the future.


Assuntos
Neoplasias Pulmonares , Tolerância a Radiação , Masculino , Humanos , Tolerância a Radiação/genética , Reparo do DNA/genética , Linhagem Celular , Dano ao DNA , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Relação Dose-Resposta à Radiação
8.
Fitoterapia ; 168: 105544, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182750

RESUMO

A new alkaloid, Orychophragine D (1), together with three known alkaloids, were isolated from the seeds of Orychophragmus violaceus. Orychophragine D represented the first example of 2-piperazinone fused 5-azacytosine skeleton. Their structures and absolute configurations were determined by spectroscopic analyses and X-ray crystallography. Compared to Ex-RAD, compound 1 exhibited a significant radioprotective activity on cell survival of irradiated HUVEC. In vivo experiments showed that 1 not only remarkably enhanced the survival of irradiated mice in 30 days, but also significantly promoted the recovery of the blood system of irradiated mice. These results suggested that 1 was valuable for further research as promising radioprotectors.


Assuntos
Alcaloides , Brassicaceae , Protetores contra Radiação , Animais , Camundongos , Alcaloides/farmacologia , Alcaloides/análise , Brassicaceae/química , Cristalografia por Raios X , Estrutura Molecular , Sementes/química , Protetores contra Radiação/química , Protetores contra Radiação/isolamento & purificação , Protetores contra Radiação/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Irradiação Corporal Total , Análise de Sobrevida , Contagem de Células Sanguíneas , Raios gama
9.
Radiat Res ; 199(4): 422-428, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37039678

RESUMO

In vitro studies allow evaluation of normal or cancer cell responses to radiation, either alone or in combination with agents used to modify these biological responses. Ionizing radiation can be produced by a variety of particles and sources, with varying energy spectra, interaction probabilities, linear energy transfer, dose uniformity, dose rates, and delivery methods. Multiple radiation sources have been used to irradiate cells in the published literature. However, the equivalence of response in cell culture models across radiation sources has not been rigorously established. Moreover, current reporting of radiation source parameters lacks consistency and rigor which may impact the reproducibility of pre-clinical data between laboratories. Relevant choices of radiation source are also of high importance due to growing interest in comparing photon versus particle radiation effect on biological responses. Therefore, this study robustly evaluates the cellular response (cell survival, apoptosis, and DNA damage) of three distinct cell lines using four unique photon generating radiation sources. We hypothesize there may be subtle differences across the radiation sources, without an appreciable difference in cellular response. The four photon irradiation energies investigated, 662 keV, 100 kVp, 220 kVp, 6 MV, did produce subtle differences in DNA damage and cell survival when treating three distinct tumor cell lines. These variations in cellular response emphasize the need to carefully consider irradiation source, energy, and dose rate depending on study goal and endpoint.


Assuntos
Apoptose , Sobrevivência Celular , Dano ao DNA , Radiação Ionizante , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Linhagem Celular Tumoral , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Sobrevivência Celular/efeitos da radiação , Apoptose/efeitos da radiação , Dano ao DNA/efeitos da radiação , Radiação Ionizante/classificação , Doses de Radiação
10.
Bull Exp Biol Med ; 174(5): 659-665, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37060380

RESUMO

Senexin B, a non-toxic selective inhibitor of cyclin-dependent protein kinases 8 and 19 (CDK8 and CDK19), in combination with γ-photon irradiation in doses of 2-10 Gy increased the death of colon adenocarcinoma cell line HCT116 (intact p53) in a logarithmically growing culture, which was accompanied by the prevention of cell cycle arrest and a decrease of "senescence" phenotype. The effect of senexin B in cells with intact p53 is similar to that of Tp53 gene knockout: irradiated HCT116p53KO cells passed through the interphase and died independently of senexin B. The inhibitor reduced the ability of cells to colony formation in response to irradiation; p53 status did not affect the effectiveness of the combination of radiation and senexin B. Thus, the CDK8/19 inhibitor senexin B increased cell sensitivity to radiotherapy by mechanisms dependent and independent of p53 status.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma/patologia , Sobrevivência Celular/efeitos da radiação , Radiação Ionizante , Linhagem Celular Tumoral , Ciclo Celular/efeitos da radiação , Quinases Ciclina-Dependentes/metabolismo
11.
Cancer Sci ; 114(7): 2931-2938, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36946242

RESUMO

The linear quadratic (LQ) model has been the dominant tool in preclinical radiobiological modeling of cell survival as a function of dose. However, as a second-order polynomial approximation, it suffers from two well-known pitfalls: nonmonotonic behavior and poor extrapolation. This study examined the raw data of 253 sets of photons and 943 sets of the ion beam from the Particle Irradiation Data Ensemble (PIDE) project to understand how often the LQ model could result in a negative ß, which would give unrealistic predictions. Additionally, the predictive performance of the LQ model, the power model, and the linear model's predictive performance was studied using leave-one-out cross-validation (LOOCV) and twofold cross-validation. It was found that, when fitted to the LQ model, 7.5% of the photon and 29.8% of the ion beam dose-response data would result in negative ß, compared to 0.77% and 2.0%, respectively, reported in published works. The LQ model performed poorly in LOOCV compared to the alternative power model, and performed the worst among the three models in twofold cross-validation. The LQ model leads to unrealistic parameters, which are vastly under-reported in published studies, and performs poorly in standard cross-validation tests. Therefore, the LQ model is not a valid predictive dose-response model for cell survival. Alternative models need to be investigated.


Assuntos
Modelos Lineares , Humanos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação
12.
Phys Med Biol ; 68(9)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36958050

RESUMO

Objective. The delivery of intensity-modulated radiation fields has improved the conformity of dose to tumour targets during radiotherapy (RT). Previously, it has been shown that intercellular communication between cells positioned in- and outside of the radiation field impacts cellular radiosensitivity under hypoxic and normoxic conditions. However, the mechanism of intercellular communication in hypoxia remains to be fully understood. In this study, the cell-killing effects of intercellular communication in hypoxia were modelled in an effort to better understand the underlying mechanisms of response.Approach. By irradiating a 50% area of the culture dish (half-field exposure), experimental dose-response curves for cell survival and residual DNA double-strand breaks (DSBs) were generated in prostate (DU145) and non-small cell lung cancer (H1299) cells. The oxygen enhancement ratio (OER) was determined from early DSB yields (corresponding to relative direct damage) and used to model the in- and out-of-field radiosensitivity.Main results. The developed integrated microdosimetric-kinetic (IMK) model successfully predicted the experimental dose responses for survival and lethal lesions, and provides a mechanistic interpretation that the probability of hits for releasing cell-killing signals is dependent on oxygen. This experimental and modelling study also suggests that residual DSBs correspond to logarithmic survival fraction (meaning lethal lesions) for in- and out-of-field cells. Our data suggest that the OER value determined using uniform-field exposure can be applied to predict the in- and out-of-field radiosensitivity of cells following exposure to intensity modulated beams.Significance. The developed IMK model facilitates a more precise understanding of intercellular signalling following exposure to intensity-modulated radiation fields.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Humanos , Oxigênio , Linhagem Celular Tumoral , Tolerância a Radiação , Sobrevivência Celular/efeitos da radiação , Hipóxia , Relação Dose-Resposta à Radiação , Dano ao DNA
13.
Phys Med Biol ; 68(1)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36533628

RESUMO

Objective.Determine the extent of sublethal radiation damage (SRD) in a cell population that received a given dose of radiation and the impact of this damage on cell survival.Approach.We developed a novel formalism to account for accumulation of SRD with increasing dose. It is based on a very general formula for cell survival that correctly predicts the basic properties of cell survival curves, such as the transition from the linear-quadratic to a linear dependence at high doses. Using this formalism we analyzed extensive experimental data for photons, protons and heavy ions to evaluate model parameters, quantify the extent of SRD and its impact on cell survival.Main results.Significant accumulation of SRD begins at doses below 1 Gy. As dose increases, so does the number of damaged cells and the amount of SRD in individual cells. SRD buildup in a cell increases the likelihood of complex irrepairable damage. For this reason, during a dose fraction delivery, each dose increment makes cells more radiosensitive. This gradual radosensitization is evidenced by the increasing slope of survival curves observed experimentally. It continues until the fraction is delivered, unless radiosensitivity reaches its maximum first. The maximum radiosensitivity is achieved when SRD accumulated in most cells is the maximum damage they can repair. After this maximum is reached, the slope of a survival curve, logarithm of survival versus dose, becomes constant, dose independent. The survival curve becomes a straight line, as experimental data at high doses show. These processes are random. They cause large cell-to-cell variability in the extent of damage and radiosensitivity of individual cells.Significance.SRD is in effect a radiosensitizer and its accumulation is a significant factor affecting cell survival, especially at high doses. We developed a novel formalism to study this phenomena and reported pertinent data for several particle types.


Assuntos
Prótons , Tolerância a Radiação , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Fótons , Eficiência Biológica Relativa
14.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361775

RESUMO

Irradiation of the tumour site during treatment for cancer with external-beam ionising radiation results in a complex and dynamic series of effects in both the tumour itself and the normal tissue which surrounds it. The development of a spectral model of the effect of each exposure and interaction mode between these tissues would enable label free assessment of the effect of radiotherapeutic treatment in practice. In this study Fourier transform Infrared microspectroscopic imaging was employed to analyse an in-vitro model of radiotherapeutic treatment for prostate cancer, in which a normal cell line (PNT1A) was exposed to low-dose X-ray radiation from the scattered treatment beam, and also to irradiated cell culture medium (ICCM) from a cancer cell line exposed to a treatment relevant dose (2 Gy). Various exposure modes were studied and reference was made to previously acquired data on cellular survival and DNA double strand break damage. Spectral analysis with manifold methods, linear spectral fitting, non-linear classification and non-linear regression approaches were found to accurately segregate spectra on irradiation type and provide a comprehensive set of spectral markers which differentiate on irradiation mode and cell fate. The study demonstrates that high dose irradiation, low-dose scatter irradiation and radiation-induced bystander exposure (RIBE) signalling each produce differential effects on the cell which are observable through spectroscopic analysis.


Assuntos
Efeito Espectador , Lesões por Radiação , Masculino , Humanos , Efeito Espectador/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Sobrevivência Celular/efeitos da radiação , Linhagem Celular
15.
Lasers Med Sci ; 37(9): 3571-3581, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36125659

RESUMO

The aim of the present study was to analyze for the first time the effect of photobiomodulation therapy (PBMT) using defocused high-power laser (DHPL) in myoblast cell line C2C12 viability and migration and compare them with low-power laser therapy. Cells were divided into 9 groups: Sham irradiation 10% fetal bovine serum (FBS); Sham irradiation 5%FBS; low-power laser 0.1 W; DHPL 810 1 W; DHPL 810 2 W; DHPL 980 1 W; DHPL 980 2 W; DHPL dual 1 W; DHPL dual 2 W. To simulate stress conditions, all groups exposed to irradiation were maintained in DMEM 5% FBS. The impact of therapies on cell viability was assessed through sulforhodamine B assay and on cells migration through scratch assays and time-lapse. Myoblast viability was not modified by PBMT protocols. All PBMT protocols were able to accelerate the scratch closure after 6 and 18 h of the first irradiation (p < 0.001). Also, an increase in migration speed, with a more pronounced effect of DHPL laser using dual-wavelength protocol with 2 W was observed (p < 0.001). In conclusion, the diverse PBMT protocols used in this study accelerated the C2C12 myoblasts migration, with 2-W dual-wavelength outstanding as the most effective protocol tested. Benefits from treating muscle injuries with PBMT appear to be related to its capacity to induce cell migration without notable impact on cell viability.


Assuntos
Terapia com Luz de Baixa Intensidade , Mioblastos , Mioblastos/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Sobrevivência Celular/efeitos da radiação , Movimento Celular , Lasers
16.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142346

RESUMO

Tissue overreactions (OR), whether called adverse effects, radiotoxicity, or radiosensitivity reactions, may occur during or after anti-cancer radiotherapy (RT). They represent a medical, economic, and societal issue and raise the question of individual response to radiation. To predict and prevent them are among the major tasks of radiobiologists. To this aim, radiobiologists have developed a number of predictive assays involving different cellular models and endpoints. To date, while no consensus has been reached to consider one assay as the best predictor of the OR occurrence and severity, radiation oncologists have proposed consensual scales to quantify OR in six different grades of severity, whatever the organ/tissue concerned and their early/late features. This is notably the case with the Common Terminology Criteria for Adverse Events (CTCAE). Few radiobiological studies have used the CTCAE scale as a clinical endpoint to evaluate the statistical robustness of the molecular and cellular predictive assays in the largest range of human radiosensitivity. Here, by using 200 untransformed skin fibroblast cell lines derived from RT-treated cancer patients eliciting OR in the six CTCAE grades range, correlations between CTCAE grades and the major molecular and cellular endpoints proposed to predict OR (namely, cell survival at 2 Gy (SF2), yields of micronuclei, recognized and unrepaired DSBs assessed by immunofluorescence with γH2AX and pATM markers) were examined. To our knowledge, this was the first time that the major radiosensitivity endpoints were compared together with the same cohort and irradiation conditions. Both SF2 and the maximal number of pATM foci reached after 2 Gy appear to be the best predictors of the OR, whatever the CTCAE grades range. All these major radiosensitivity endpoints are mathematically linked in a single mechanistic model of individual response to radiation in which the ATM kinase plays a major role.


Assuntos
Proteínas Quinases , Tolerância a Radiação , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos da radiação , Reparo do DNA , Fibroblastos/metabolismo , Humanos , Proteínas Quinases/metabolismo , Tolerância a Radiação/efeitos da radiação
17.
J Photochem Photobiol B ; 234: 112527, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35914464

RESUMO

In recent decades, the laser treatment of cancer has been introduced as a promising treatment option. Because of the maldistribution of optical energy and an ambiguous boundary between the normal and tumor tissues, laser irradiation can stimulate residual cancer cells, leading to a cancer regrowth. As photobiomodulation (PBM) is involved in an extensive range of cellular responses, profound comprehension of photo-stimulated mechanisms against the cancer cells is required to establish a safety margin for PBM. Therefore, we aimed to identify the stimulant effects of PBM at various wavelengths against the tumor cells to establish a safety margin for the laser treatment. CT26 murine colon cancer cells were exposed to either 405 (BL), 635 (VIS), or 808 (NIR) nm laser lights at the fluences of 0, 10, 30, and 50 J/cm2. In addition, CT26 tumor-bearing mice were irradiated with BL, VIS, or NIR at a fluence of 30 J/cm2. Both the proliferation and angiogenesis potential of the CT26 cells and tumors were evaluated using the MTT assay, western blot, and immunohistochemistry (IHC) staining analyses. Although cell viability was not statistically significant, BL significantly induced p-ERK upregulation in the CT26 cells, indicating that PBM with BL can stimulate proliferation. In vivo tests showed that the NIR group exhibited the maximum relative tumor volume, and BL yielded a slight increase compared to the control. In the IHC staining and western blot analyses, both BL and NIR increased the expression of EGFR, VEGF, MMP-9, and HIF-1α, which are related to the proliferation and angiogenesis-related factors. Further investigations will be pursued to clarify the molecular pathways that depend on the cancer cell types and laser wavelengths for the establishment of safety guidelines in clinical environments.


Assuntos
Neoplasias do Colo , Terapia com Luz de Baixa Intensidade , Animais , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Neoplasias do Colo/radioterapia , Luz , Camundongos
18.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682607

RESUMO

The photothermal effect refers to a phenomenon in which light energy is converted into heat energy, and in the medical field, therapeutics based on this phenomenon are used for anticancer treatment. A new treatment technique called photothermal therapy kills tumor tissue through a temperature increase and has the advantages of no bleeding and fast recovery. In this study, the results of photothermal therapy for squamous cell carcinoma in the skin layer were analyzed numerically for different laser profiles, intensities, and radii and various concentrations of gold nanoparticles (AuNPs). According to the heat-transfer theory, the temperature distribution in the tissue was calculated for the conditions under which photothermal therapy was performed, and the therapeutic effect was quantitatively confirmed through three apoptotic variables. In addition, the laser intensity and the volume fraction of AuNPs were optimized, and the results provide useful criteria for optimizing the treatment effects in photothermal therapy.


Assuntos
Ouro , Nanopartículas Metálicas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Nanopartículas Metálicas/uso terapêutico , Fototerapia/métodos , Terapia Fototérmica , Temperatura
19.
Cancer Sci ; 113(8): 2807-2813, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35642350

RESUMO

Biological effectiveness and relative biological effectiveness are critical for proton and ion beam radiotherapy. However, the relationship between the two quantities and physical character of ion beams is not well established. By analyzing 1188 sets of in-vitro cell irradiation experiments using ion beams ranging from protons to 238 U, compiled by the Particle Irradiation Data Ensemble (PIDE) project, the biological effectiveness of the ion beams, with cell survival fractionation (SF) as the endpoint, was found to be dependent on the fluence and linear energy transfer (LET) of the ion beam. Consequently, the relative biological effectiveness of the ion beam to photon beam was also established as a function of LET. A common form of relationship among SF, fluence, and LET was found to be valid for all ion beam experiments. The close form relationship could be used for proton and ion beam radiotherapy applications.


Assuntos
Terapia com Prótons , Prótons , Sobrevivência Celular/efeitos da radiação , Humanos , Transferência Linear de Energia , Eficiência Biológica Relativa
20.
Lasers Med Sci ; 37(8): 3193-3201, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35727394

RESUMO

This study was conducted to investigate the inhibitory effects of light-emitting diodes (LEDs) on exosome biogenesis and angiogenesis capacity in Ishikawa endometrial cancer cells. To this end, cells were exposed to different energy densities (fluences) of 4, 8, 16, 32, and 64 J/cm2 for 5 days (once every 24 h), and cell viability was determined using an MTT assay. Based on data from the MTT panel, cells were exposed to 4 and 16 J/cm2 for subsequent analyses. Exosome biogenesis was also monitored via monitoring the expression of CD63, ALIX, and Rab27a and b. The size and morphology of exosomes in the supernatant were measured using scanning electron microscopy (SEM), and dynamic light scattering (DLS). Using Transwell insert, the migration capacity of these cells was studied. The angiogenic effects of irradiated Ishikawa cell secretome at different fluences were monitored on human endothelial cells using in vitro tubulogenesis. Results indicated LED can reduce the viability of Ishikawa cells in a dose-dependent manner. According to our data, 4 and 64 J/cm2 groups exhibited minimum and maximum cytotoxic effects compared to the control cells. Data revealed a close proportional relationship between the power of laser and exosome average size compared to the non-treated control cells (p < 0.05). Real-time PCR analysis showed the suppression of Rab27b and up-regulation of Rab27a in irradiated cells exposed to 4 and 16 J/cm2 (p < 0.05). These effects were evident in the 16 J/cm2 group. Likewise, LED can inhibit the migration of Ishikawa cells in a dose-dependent manner (p < 0.05). Tubulogenesis activity of endothelial cells was suppressed after incubation with the secretome of irradiated Ishikawa cells (p < 0.05). These data showed tumoricidal properties of LED irradiation on human adenocarcinoma Ishikawa cells via the inhibition of exosome biogenesis and suppression of angiogenesis capacity.


Assuntos
Adenocarcinoma , Exossomos , Sobrevivência Celular/efeitos da radiação , Células Endoteliais , Exossomos/metabolismo , Feminino , Humanos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...